Antitumor effects of inductive hyperthermia using magnetic ferucarbotran nanoparticles on human lung cancer xenografts in nude mice
نویسندگان
چکیده
BACKGROUND The effects of inductive hyperthermia on lung cancer have yet to be fully investigated. Magnetic nanoparticles used in inductive hyperthermia are made-to-order and expensive. This study was performed to investigate the use of ferucarbotran in inductive hyperthermia and to clarify whether inductive hyperthermia using ferucarbotran promotes antitumor effects in vivo using a lung cancer cell line. METHODS We injected A549 cells subcutaneously into the right thighs of BALB/c nu/nu nude mice. Forty mice with A549 xenografts were then classified into three groups. Group 1 was the control group. All mice in groups 2 and 3 had ferucarbotran injected into their tumors, and mice in group 3 were then subjected to alternating magnetic field irradiation. We evaluated tumor temperature during the hyperthermic procedure, the time course of tumor growth, histologic findings in tumors after hyperthermic treatment, and adverse events. RESULTS Intratumor temperature rose rapidly and was maintained at 43°C-45°C for 20 minutes in an alternating magnetic field. Tumor volumes in groups 1 and 2 increased exponentially, but tumor growth in group 3 was significantly suppressed. No severe adverse events were observed. Histologic findings for the tumors in group 3 revealed mainly necrosis. CONCLUSION Inductive hyperthermia using ferucarbotran is a beneficial and promising approach in the treatment of lung cancer. Ferucarbotran is a novel tool for further development of inductive hyperthermia.
منابع مشابه
Synthesis and Application of New Gadolinium-Porphyrins as Potential MR Imaging Contrast Agents for Cancer Detection in Nude Mice
Two new potential magnetic resonance imaging contrast agents, Gd-hematoporphyrin (Gd-H) and Gd-tetra-carboranylmethoxyphenyl-porphyrin (Gd TCP), were synthesized and applied to nude mice with human melanoma (MM 138) xenografts. These agents showed a high relaxivity because of their greater potential to coordinate water molecules. The reduction of T1 relaxation times of 16 and 21% was observed i...
متن کاملEffect of magnetic fluid hyperthermia with dendrimer coated iron oxide nanoparticles on breast cancer in BALB/c mice
Introduction: Magnetic fluid hyperthermia (MFH) is a promising therapeutic method in cancer therapy with using magnetic nanoparticles (NPs). In this study, we assessed the effect of MFH on mechanisms of cell death in murine breast cancer cell line (MC4-L2) and also the treatment of breast tumor in BALB/C mice using four generation dendrimer coated iron oxide nanoparticles (G4@I...
متن کاملLocal hyperthermia and SR 4233 enhance the antitumor effects of radioimmunotherapy in nude mice with human colonic adenocarcinoma xenografts.
Local hyperthermia and the hypoxic cytotoxin SR 4233 were administered to nude mice with 693 +/- 47 mm3 (mean +/- SE) s.c. HCT-8 human colonic adenocarcinoma xenografts in an attempt to enhance the antitumor effects of radioimmunotherapy. Biodistribution studies revealed preferential binding of NR-Lu-10, a murine monoclonal antibody, to the tumors compared with an isotype-matched control antibo...
متن کاملInjectable Estradiol Valerate, as a Substitute for Estradiol Pellets in Breast Cancer Animal Model
The ability to maintain and study human tissues in in-vivo environment has proved to be a valuable tool in breast cancer research for several decades. The most widely tissues have been xenografts established human breast cancer cell lines into athymic nude mice. The aim of this study was to provide a new accurate and affordable method for the establishment of breast cancer xenograftin nude mice...
متن کاملStudy on Fe3O4 Magnetic Nanoparticles Size Effect on Temperature Distribution of Tumor in Hyperthermia: A Finite Element Method
In recent years, Hyperthermia has been used as an emerging technique for cancer treatment, especially for localized tumors. One of the promising cancer treatment approaches is magnetic nanoparticle (MNPs) Hyperthermia. In this theoretical work, the temperature distribution of a common tumor over the different sizes of Fe3O4 magnetic nanoparticles, namely 25, 50, 100, and 200 nm, was stud...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2013